Force Majeure: Therapeutic measures in response to restricted supply of imiglucerase (Cerezyme) for patients with Gaucher disease

Carla E.M. Hollak a, Stephan vom Dahl b, Johannes M.F.G. Aerts c, Nadia Belmatoug d, Bruno Bembi e, Yossi Cohen f, Tanya Collin-Histed g, Patrick Deegeh h, Laura van Dussen a, Pilar Giraldoi i, Eugen Mengel j, Helen Michelakakis k, Jeremy Manue k, Martin Hrebicek l, Rosella Parini m, Jörg Reinke o, Maja di Rocco p, Miguel Pocovi q, Maria Clara Sa Miranda r, Anna Tylki-Szymanska s, Ari Zimran t and Timothy M. Cox h

aDepartment of Endocrinology and Metabolism, Academic Medical Centre, F5-170, PO Box 22660, 1100 DD Amsterdam, The Netherlands
bKlinik für Innere Medizin, St. Franziskus-Hospital, Köln, Germany
cDepartment of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
dReference Center for Lysosomal Diseases, Hôpital Beaujon, Clichy, France
eCentro di Coordinamento Regionale per le Malattie Rare, Ospedale Universitario, S. Maria della Misericordia, Udine, Italy
fEGA and Israeli Gaucher Association, UK
gEGA and Gauchers Association, UK
hDepartment of Medicine, Addenbrooke's Hospital, University of Cambridge, UK
iHospital Universitario Miguel Servet, Zaragoza. CIBERER, Spain
jVilla metabolica, University Medical Center, Mainz, Germany
kDepartment of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
lInstitute of Inherited Metabolic Disorders, Charles University and General University Hospital, Prague, Czech Republic
mRare Metabolic Diseases Unit “Fondazione Mariani”, Pediatric Unit, San Gerardo Hospital, Monza, Italy
nUniversity of Zaragoza. CIBERER. Spain
oVilla metabolica, University Medical Center, Mainz, Germany
pDepartment of Pediatrics, Gaslini Institute, Genoa, Italy
qLysosome and Peroxisome Biology Unit, Instituto de Biologia Molecular Celular, Porto University, Porto, Portugal
rClinics of Metabolic Diseases, Endocrinology and Diabetology The Children's Memorial Health Institute, Warsaw, Poland
sShaare Zedek Medical Center, Jerusalem, Israel

Received 14 September 2009; revised 22 September 2009. (Communicated by A. Zimran, M.D., 22 September 2009). Available online 4 October 2009.

Abstract

Gaucher disease is the first lysosomal disorder for which clinically effective enzyme replacement therapy has been introduced. Lifelong treatment with imiglucerase, the recombinant glucocerebrosidase manufactured by the Genzyme Corporation (MA, USA), is administered intravenously — usually at biweekly intervals. An acute shortage of imiglucerase (to 20% of prior global supply) has occurred as a result of viral contamination of the production facility; production was halted, and a full supply of imiglucerase is not anticipated until January 2010. An urgent meeting of physicians, researchers, and patients was convened through the agency of the European Working Group for Gaucher Disease; this was instigated by patients internationally represented by the European Gaucher Alliance. Here we present a position statement based on the findings of the group, with key recommendations about identification and monitoring of at-risk patients threatened by the abrupt withdrawal of treatment, the equitable distribution of residual imiglucerase — and access to alternative treatments including those that have completed phase III clinical trials but have not yet been licensed.

Keywords: Gaucher disease; Cerezyme; Imiglucerase; Vesivirus; Europe

Abbreviations: CEAP, Cerezyme Emergency Access Program; ECAP, European Cerezyme Access Program; EGA, European Gaucher Alliance; EMEA, European Medicines Agency; ERT, enzyme replacement therapy; EWGGD, European Working Group on Gaucher Disease; ESGLD, European Study Group on Lysosomal Diseases; FDA, Food and Drug Administration; GD, Gaucher disease; h-GCD, human cell-derived glucocerebrosidase (velaglucerase); ICGG, International Collaborative Gaucher Group; MPS II, mucopolysaccharidosis type II, Hunter disease; NP-C disease, Niemann-Pick disease type C; pr-GCD, plant-cell derived human glucocerebrosidase (taliglucerase); SRT, substrate reduction therapy